
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 891
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

SECURITY THROUGH SSL IN CLOUD
COMPUTING: A REVIEW

Angel Makhaik, Pankaj Vaidya

Abstract– Cloud Computing provides hardware and software resources as a service to client. In it, to gain access to these services one need to have
Internet access. As we all know Internet is everywhere and in every home, so the number of users has increased. Due to the increase in the number of
internet users, the number of online transactions are also increasing. Like user is asked to give his sensitive data, say credit card details, for some
transactions. Each information which is transmitted over the web has to be traversed to many computer servers before it reach its destination. It is up to
the user which webpage is secure and which is not. For such scenario SSL is a solution. This paper will give u the insight of how the data is securely
sent over the internet through SSL.

Index Term: - Cloud Computing, Diffie-Hellman Encryption, Key Exchange Protocol, RSA, SSL, Services.

—————————— ——————————

1. INTRODUCTION
Cloud computing is an expression used to describe a
variety of computing concepts that involve a large number
of computers connected through a real-time
communication network such as the Internet.[1] It allows
to access applications that actually resides at a location
other than your computer or other internet connected
device. Cloud computing get its name as a metaphor for the
internet. Typically, the internet is represented in network
diagram as a cloud. Cloud computing allows consumers
and businesses to use applications without installation and
access their personal files at any computer with internet
access.

1.1 Services:
Services of cloud computing is divided in following three
categories:-
1. Software as a Service. (SaaS)
2. Platform as a Service. (PaaS)
3. Infrastructure as a Service. (IaaS)

Software as a Service

Software as a Service (SaaS) is a model in which an
application is hosted as a service to customers who access it
via Internet. When the software is hosted off-site, the
customer doesn’t have to maintain it. On the other hand, it
is out of customer‘s hands when the hosting service decides
to change it. Cost can be an important factor in this
computing environment for accessing any software, rather

than pay for it once and be done with it, the more you use
it, the more you will have to pay (“pay-for-use”).

Platform as a Service
Platform as a Service (PaaS) is another application delivery
model that provides all the resources required to build
application and services completely from the Internet,
without downloading or installing software. PaaS services
include application design, development, testing,
deployment and hosting.

Infrastructure as a Service:
Infrastructure as a service is the next form of services
available in cloud computing. Where SaaS, PaaS are
providing applications to customers, IaaS doesn’t. It simply
offers the hardware so that your organization can put
whatever they want onto it. Rather than purchase servers,
software, racks, and having to pay for the datacenter space
for them, the service provider rents those resources.

2. SECUIRTY CONCEPTS
Security over the Internet has become a major concern for
the modern communication sector. Whether it is financial,
personal or business everyone wants to know whom they
are communicating with, ensuring that their data can be
sent securely, and whether it has reached the destination
correctly. Communicating data over a network always
implies a possible loss of confidentiality, message integrity
or endpoint authentication. These are the three major
aspects one has to consider when speaking of data security
[2]:
• Confidentiality: the user wants its data to be kept secret
from the listeners on the network.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 892
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

• Message Integrity: The user wants integrity of its data,
what is received is what is sent.
• Endpoint Authentication: The user wants to be sure that
he is communicating to the right partner.

 SSL assures secure data transmission through the use of
several security concepts. These concepts consist of one or
more cryptographic algorithms, used to provide security.

2.1 Encryption
Encryption technique is used to protect the confidential
data from unauthorized user. Encryption is the most
effective way to achieve data security. The process of
Encryption hides the contents of a message in a way that
the original information is recovered only through a
decryption process [3]. The purpose of Encryption is to
prevent unauthorized parties from viewing or modifying
the data [4].

Key-based algorithms use an Encryption key to encrypt the
message. There are two general categories for key-based
Encryption: Symmetric Encryption which uses a single key
to encrypt and decrypt the message and Asymmetric
Encryption which uses two different keys – a public key to
encrypt the message, and a private key to decrypt it.
Currently, there are several types of key based Encryption
algorithms such as: DES, RSA, PGP, Elliptic curve, and
others but all of these algorithms depend on high
mathematical manipulations [5, 6].

 The scheme of using the same key for encryption and
decryption is often referred to as Secret Key Cryptography
(SKC). Some of the most popular ciphers on the market are
the Data Encryption Standard (DES) [7], Triple-DES (DES
repeated three times) [8], RC2 [9] and RC4 [10]

2.1.1 Message Digests:
A message digest is a function that takes a message of
arbitrary length as an input and generates a string of fix
length as an output. This string is simply a characteristic
representation of the initial message’s content. Message
digests have two important properties:

1. Irreversibility: Computing a message given its digest
should be extremely difficult.

2. Collision-Resistance: It should be nearly impossible to
produce two messages with the same digest.

The main purpose of message digests is the computation of
Digital Signatures and Message Authentication Codes

(MACs). Message digests generally allow to prove
possession of a secret without actually revealing it.
Currently, Message Digest 5 (MD5) [11] and Secure Hash
Algorithm (SHA-1) [12] are the most widely used message
digest algorithms.

2.1.2 Message Authentication Codes:
A Message Authentication Code is sort of a digest
algorithm with the difference that beside the message, a key
is incorporated to the computation as well. Thus a MAC
always depends on both the message being treated as well
as the key being used for encryption. MACs are usually
constructed using digest algorithms. SSLv3 uses a variant
of HMAC, while TLS uses HMAC itself. HMAC is a
description of how to create MACs with provable security
properties based on digest algorithms.

3. SSL OVERVIEW:-
SSL is a protocol developed by Netscape for transmitting
private documents via the Internet. Secure Sockets Layer
(SSL) and Transport Layer Security (TLS) protocols is to
provide a mechanism for secure communications between
two parties over a network which neither party has end-to-
end control over and thus has the potential for third parties
to intercept communication.
SSL is a sophistication encryption scheme that does not
require the client and the server to arrange for a secret key
to be exchanged between the client and server BEFORE the
transaction is started. SSL uses public/private keys to
provide a flexible encryption scheme that can be setup at
the time of the secure transaction.

The preconfigured secret keys are not suitable for Web
based secure services that involve millions of users who
have no prior secret key arrangement with the secure
server.
SSL solves this problem by using asymmetric keys. These
keys are defined in pairs of public and private keys. As the
name suggests the public key is freely available to anybody.
The private key is known only to the server. The keys have
two important properties:
(1) Data encrypted by the client using the pubic key can be
decrypted only by the server's private key. Due to this
property of the keys, the client is able to send secure data
that can be understood only by the server.
(2) Data encrypted to by the server's private key can only be
decrypted using the public key. This property is useful in a
client level authentication of the server. If the server sends a
known message (say the name of the server), the client can
be sure that it is talking to the authentic server and not an
imposter if it is successfully able to decrypt the message
using the public key.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 893
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

The public/private key based encryption is used only for
handshaking and secret key exchange. Once the keys have
been exchanged the symmetric secret keys are used. This is
done for two reasons:
(1) Public/private key based encryption techniques are
computationally very expensive thus their use should be
minimized.
(2) The secret key mechanism is needed for server to client
communication.

The SSL protocol includes two sub-protocols:

SSL record protocol: - format used to transmit data

SSL handshake protocol: - using the SSL record protocol to
exchange a series of messages

3.1 SSL record protocol
The SSL Record Protocol provides two services for SSL
connections: confidentiality, by encrypting application
data; and message integrity, by using a message
authentication code (MAC). The Record Protocol is a base
protocol that can be utilized by some of the upper-layer
protocols of SSL. One of these is the handshake protocol
which, as described later, is used to exchange the
encryption and authentication keys. Following Figure
indicates the overall operation of SSL Record Protocol.

AS you can see in the diagram, firstly record protocol takes
application message to be transmitted. Then second step is
the fragmentation, each upper-layer message is fragmented
into blocks of 2 14 bytes (16,384 bytes) or less. Next,
compression is optionally applied. In SLLv3 (as well as the
current version of TLS), no compression algorithm is
specified, so the default compression algorithm is null.
However, specific implementations may include a
compression algorithm.

The next step is to compute the Message authentication
code (MAC) over the compressed data. To compute the
MAC shared key is used. Next, the compressed message

plus the MAC are encrypted using symmetric encryption.
A variety of encryption algorithms may be used, including
the Data Encryption Standard (DES) and triple DES. The
final step of SSL Record Protocol processing is to prepend a
header, consisting of the following fields:

 Content Type (8 bits): The higher-layer protocol used to
process the enclosed fragment.

 Major Version (8 bits): Indicates major version of SSL in
use. For SSLv3, the value is 3.

 Minor Version (8 bits): Indicates minor version in use. For
SSLv3, the value is 0.

 Compressed Length (16 bits): The length in bytes of the
plain-text fragment (or compressed fragment if
compression is used).

Change CipherSpec Protocol
The Change CipherSpec Protocol is one of the three SSL-
specific protocols that use the SSL Record Protocol, and it is
the simplest. This protocol consists of a single message,
which consists of a single byte with the value 1. The sole
purpose of this message is to cause the pending state to be
copied into the current state, which updates the
CipherSuite to be used on this connection. This signal is
used as a coordination signal. The client must send it to the
server and the server must send it to the client. After each
side has received it, all of the following messages are sent
using the agreed-upon ciphers and keys.

Alert Protocol
The Alert Protocol is used to convey SSL-related alerts to
the peer entity. Each message in this protocol consists of
two bytes. The first byte takes the value "warning" (1) or
"fatal"(2) to convey the severity of the message. If the level
is fatal, SSL immediately terminates the connection. Other
connections on the same session may continue, but no new
connections on this session may be established.
The second byte contains a code that indicates the specific
alert. An example of a fatal message is illegal parameter (a
field in a handshake message was out of range or
inconsistent with other fields). An example of a warning
message is close notify (notifies the recipient that the sender
will not send any more messages on this connection; each
party is required to send a close notify alert before closing
the right side of a connection).

3.2 SSL Handshake Protocol
The most complex part of SSL is the Handshake Protocol.
This protocol allows the server and client to authenticate

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 894
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

each other and to negotiate an encryption and MAC
algorithm and cryptographic keys to be used to protect data
sent in an SSL record. The Handshake Protocol is used
before any application data is transmitted. The Handshake
Protocol consists of a series of messages exchanged by the
client and the server.
The Handshake Protocol is shown in figure 11.6. This
consists of four phases:

1. Establish security capabilities including protocol

version, session ID, cipher suite, compression method
and initial random numbers. This phase consists of the
client hello and server hello messages which contain
the following (this is for the client however it’s a little
different for the server):
• Version: The highest SSL version understood by

client
• Random: 32-bit timestamp and 28 byte nonce.
• Session ID: A variable length session identifier.
• CipherSuite: List of crypto algorithms supported

by client in decreasing order of preference. Both
key exchange and CipherSpec (this includes fields
such as Cipher Algorithm, Mac Algorithm, Cipher.

Figure 2: Handshake Protocol Action

• Type, Hash Size, Key Material and IV Size) are
defined.

• Compression Method: List of methods supported
by client.

2. Server may send certificate, key exchange, and request

certificate it also signals end of hello message phase.
The certificate sent is one of a chain of X.509 certificates

discussed earlier in the course. The server key
exchange is sent only if required. A certificate may be
requested from the client if needs be by certificate
request.

3. Upon receipt of the server done message, the client
should verify that the server provided a valid
certificate, if required, and check that the server hello
parameters are acceptable. If all is satisfactory, the
client sends one or more messages back to the server.
The client sends certificate if requested (if none
available then it sends a no certificate alert instead).
Next the client sends client key exchange message.
Finally, the client may send certificate verification.

4. Change cipher suite and finish handshake protocol.
The secure connection is now setup and the client and
server may begin to exchange application layer data.

4. SSL AND THE OSI MODEL
The SSL protocol is a security protocol that sits on top of
TCP at the transport layer. In the OSI model, application
layer protocols such as HTTP or IMAP, handle user
application tasks such as displaying web pages or running
email servers. Session layer protocols establish and
maintain communications channels. Transport layer
protocols such as TCP and UDP, handle the flow of data
between two hosts. Network layer protocols such as IP and
ICMP provide hop-by-hop handling of data packets across
the network.

5. THE KEY EXCHANGE PROTOCOL

5.1 The SSL Handshake Protocol
The SSL handshake-protocol message flow involves client
and server negotiating a common cipher suite acceptable to
both parties, exchanging random once, and the client
sending an encrypted master secret. Then each verifies that
their protocol runs match by authenticating all messages
with the master secret, and assuming that the check
succeeds, both generate session keys from the master secret
and proceed to send application data.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 895
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

The handshake protocol is responsible for selecting a
CipherSpec and generating a MasterSecret, which together
comprise the primary cryptographic parameters associated
with a secure session. The handshake protocol can also
optionally authenticate parties who have certificates signed
by a trusted certificate authority [13].

5.2 Authentication and key exchange
SSL supports three authentication modes: authentication of
both parties, server authentication with an unauthenticated
client, and total anonymity. Whenever the server is
authenticated, the channel should be secure against man-in-
the-middle attacks, but completely anonymous sessions are
inherently vulnerable to such attacks. Anonymous servers
cannot authenticate clients, since the client signature in the
certificate verify message may require a server certificate to
bind the signature to a particular server. If the server is
authenticated, its certificate message must provide a valid
certificate chain leading to an acceptable certificate
authority. Similarly, authenticated clients must supply an
acceptable certificate to the server. Each party is responsible
for verifying that the other's certificate is valid and has not
expired or been revoked. The general goal of the key
exchange process is to create a pre MasterSecret known to
the communicating parties and not to attackers. The pre
MasterSecret will be used to generate the MasterSecret. The
MasterSecret is required to generate the finished messages,
encryption keys, and MAC secrets. By sending a correct
finished message, parties thus prove that they know the
correct pre MasterSecret [14].

5.3 Anonymous key exchange
Completely anonymous sessions can be established using
RSA, Diffie-Hellman, or Fortezza for key exchange. With
anonymous RSA, the client encrypts a pre MasterSecret
with the server's uncertified public key extracted from the
server key exchange message. The result is sent in a client
key exchange message. Since eavesdroppers do not know
the server's private key, it will be infeasible for them to
decode the pre MasterSecret. With Diffie-Hellman or
Fortezza, the server's public parameters are contained in
the server key exchange message and the clients are sent in
the client key exchange message. Eavesdroppers who do
not know the private values should not be able to find the
Diffie-Hellman result (i.e. the pre MasterSecret) or the
Fortezza token encryption key (TEK). Warning: Completely
anonymous connections only provide protection against
passive eavesdropping. Unless an independent tamper-
proof channel is used to verify that the finished messages
were not replaced by an attacker, server authentication is
required in environments where active man-in-the-middle
attacks are a concern [14].

5.4 RSA key exchange and authentication
With RSA, key exchange and server authentication are
combined. The public key may be either contained in the
server's certificate or may be a temporary RSA key sent in a
server key exchange message. When temporary RSA keys
are used, they are signed by the server's RSA or DSS
certificate. The signature includes the current
ClientHello.random, so old signatures and temporary keys
cannot be replayed. Servers may use a single temporary
RSA key for multiple negotiation sessions.

When RSA is used for key exchange, clients are
authenticated using the certificate verify message. The
client signs a value derived from the MasterSecret and all
preceding handshake messages. These handshake messages
include the server certificate, which binds the signature to
the server, and ServerHello.random, which binds the
signature to the current handshake process [15].

5.5 Diffie-Hellman key exchange with authentication
When Diffie-Hellman key exchange is used, the server can
either supply a certificate containing fixed Diffie-Hellman
parameters or can use the client key exchange message to
send a set of temporary Diffie-Hellman parameters signed
with a DSS or RSA certificate. Temporary parameters are
hashed with the hello.random values before signing to
ensure that attackers do not replay old parameters. In either
case, the client can verify the certificate or signature to
ensure that the parameters belong to the server. If the client
has a certificate containing fixed Diffie-Hellman
parameters, its certificate contains the information required
to complete the key exchange. Note that in this case the
client and server will generate the same Diffie-Hellman
result (i.e., pre MasterSecret) every time they communicate.
To prevent the pre MasterSecret from staying in memory
any longer than necessary, it should be converted into the
MasterSecret as soon as possible. Client Diffie-Hellman
parameters must be compatible with those supplied by the
server for the key exchange to work. If the client has a
standard DSS or RSA certificate or is unauthenticated, it
sends a set of temporary parameters to the server in the
client key exchange message, then optionally uses a
certificate verify message to authenticate itself [16].

5.6 Fortezza
Fortezza's design is classified, but at the protocol level it is
similar to Diffie-Hellman with fixed public values
contained in certificates. The result of the key exchange
process is the token encryption key (TEK), which is used to
wrap data encryption keys, client write key, server write
key, and master secret encryption key. The data encryption
keys are not derived from the pre MasterSecret because
unwrapped keys are not accessible outside the token. The

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 896
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

encrypted pre MasterSecret is sent to the server in a client
key exchange message. The asymmetric algorithms are
used in the handshake protocol to authenticate parties and
to generate shared keys and secrets.

6. CONCLUSION
SSL has become the universal standard for authenticating
web sites to web browsers, and for encrypting
communications between web browsers and web servers.
The data which is sent over the communication network is
totally secure and that total security is provided by SSL
Protocol. It also discusses the role of key exchange protocol
through handshake protocol authenticate parties who have
certificates signed by a trusted certificate authority. Thus,
the paper describes the usage of SSL in securing the data
transmitted through web pages.

7. REFERENCE:-
1. Mariana Carroll, Paula Kotzé, Alta van der Merwe

(2012). "Securing Virtual and Cloud Environments". In
I. Ivanov et al. Cloud Computing and Services Science,
Service Science: Research and Innovations in the Service
Economy. Springer Science+Business
Media. doi:10.1007/978-1-4614-2326-3

2. A. O. Freier P. Karlton and P. C. Kocher. The SSL
Protocol, Version 3.0. Netscape Communications, 1996,
http://wp.netscape.com/eng/ssl3/draft302.txt (2003).

3. Wikipedia,“Encryption”,http://en.wikipedia.org/wiki/E
ncryption, modified on 13 December 2006.

4. Freeman J., Neely R., and Megalo L. “Developing Secure
Systems: Issues and Solutions”. IEEE Journal of
Computer and Communication, Vol. 89, PP. 36-45. 1998

5. Beth T. and Gollmann D. “Algorithm Engineering for
Public Key Algorithms”. IEEE Journal on Selected Areas
in Communications; Vol. 7, No 4, PP. 458-466. 1989

6. IBM. “The Data Encryption Standard (DES) and its
strength against attacks”. IBM Journal of Research and
Development, Vol. 38, PP. 243-250. 1994

7. National Institute of Standards and Technologies. Data
Encryption Standard. U.S. Dpt. of Commerce,
December 1993.

8. ANSI. American National Standard for Financial
Institution Key Management (wholesale). ANSI, 1985.

9. R. Rivest. A Description of the RC2(r) Encryption
Algorithm, RFC 2268. Network Working Group, 1998,
ftp://ftp.rfc-editor.org/in-notes/rfc2268.txt (2003).

10. B. Schneier. Applied Cryptography, 2ed. John Wiley
and Sons, 1996

11. R. Rivest. The MD-5 Message-Digest Algorithm, RFC
1321. John Wiley and Sons, 1996, ftp://ftp.rfc-
editor.org/in-notes/rfc1321.txt (2003).

12. National Institute of Standards and Technologies.
National Institute of Standards and Technologies, and
Secure Hash Standard. U.S. Dpt. of Commerce, 1994.

13. [BCK96] M. Bellare, R. Canetti, and H. Krawczyk,
\Keying Hash Functions for Message Authentication,"
Advances in Cryptology|CRYPTO '96 Proceedings,
Springer-Verlag, 1996, pp. 1-15.

14. [FKK96] A. Freier, P. Karlton, and P. Kocher, The SSL
Protocol Version 3.0",
ftp://ftp.netscape.com/pub/review/ ssl-spec.tar.Z,
March 4 1996, Internet Draft, work in progress.

15. MERKLE, R., AND HELLMAN, M. 1981. On the
security of multiple encryptlonCommun. ACM 24, 7
(July), 465-467.

16. [RSA93] RSA Data Security, Inc., \Public-Key
Cryptography Standards (PKCS)," Nov 93.

IJSER

http://www.ijser.org/

	1. INTRODUCTION
	1.1 Services:
	2. SECUIRTY CONCEPTS

	2.1 Encryption
	2.1.1 Message Digests:
	2.1.2 Message Authentication Codes:
	3. SSL OVERVIEW:-

	3.1 SSL record protocol
	3.2 SSL Handshake Protocol
	4. SSL AND THE OSI MODEL
	5. THE KEY EXCHANGE PROTOCOL

	5.1 The SSL Handshake Protocol
	5.2 Authentication and key exchange
	5.3 Anonymous key exchange
	5.4 RSA key exchange and authentication
	5.5 Diffie-Hellman key exchange with authentication
	5.6 Fortezza
	6. CONCLUSION
	7. REFERENCE:-

